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Generalized force model of traffic dynamics

Dirk Helbing and Benno Tilch
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Floating car data of car-following behavior in cities were compared to existing microsimulation models,
after their parameters had been calibrated to the experimental data. With these parameter values, additional
simulations have been carried out, e.g., of a moving car which approaches a stopped car. It turned out that, in
order to manage such kinds of situations without producing accidents, improved traffic models are needed.
Good results were obtained with the proposed generalized force model.@S1063-651X~98!15006-7#

PACS number~s!: 05.70.Ln, 02.70.Ns, 34.10.1x, 89.401k
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I. INTRODUCTION

During the last five years, gas-kinetic@1,2#, fluid-dynamic
@1–3#, and other models have been developed, aimed a
understanding of stop-and-go traffic. The topic is related
the fields of nonlinear dynamics@3#, phase transitions@4#,
and stochastic processes@5#. In addition, microscopic traffic
models were proposed for the description of interact
driver-vehicle units. They can be classified into cellular a
tomata models@5#, which are discrete in space and time, a
continuous models@1,6,7#. The latter are required for de
tailed studies of car-following behavior and traffic instabi
ties, which are necessary for an investigation of the con
quences of technical optimization measures~e.g., of
autopilots for an automatic control of vehicle accelerat
and braking!.

Therefore, a research group of the Bosch GmbH has
cently recorded follow-the-leader data by means of a floa
car a which measured the vehicle speedva , the netto dis-
tancesa to the car in front, the accelerationaa of it, and the
relative velocityDva . By a correlation analysis it was dem
onstrated that, among all possible combinations of subse
these four quantities,sa , Dva , andva are the most signifi-
cant variables for the description of vehicle dynamics@8#. In
Sec. III, we will find plausible reasons for this.

The follow-the-leader data, if plotted in thesa-Dva plane,
show the characteristic oscillation of vehicle motion arou
states with relative velocity zero~cf. Fig. 1!, which was al-
ready reported by Hoefs@9#. Except for the previously men
tioned significance analysis, the data were also used for
brating existing microsimulation models. With the resulti
optimal sets of parameter values, the models were simul
for the observed situation. That is, the first vehicle w
moved according to its measured velocity, and the follow
vehicle was simulated according to the respective model
der consideration, starting with the same initial velocity a
distance as the floating car. The average relative quad
deviation D between the simulated and actually measu
distances@cf. Eq. ~10!# was used as a measure of the goo
ness of fit of the respective model@8#.

In order to obtain improved results, we have develope
generalized force model, in which each term and each

*World Wide Web address: http://www.theo2.physik.un
stuttgart.de/helbing.html
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rameter has a clear meaning. Moreover, by parameter
bration it turns out that all model parameters have the ri
order of magnitude. Therefore, it can be easily said what
parameter values will look like, if the speed limit, the acc
eration capability, the average vehicle length, the visibili
or the reaction time is modified~e.g., due to technical mea
sures!. In addition, this model achieves a better fit at a
duced number of model parameters than previous mod
Finally, the generalized force model manages to cope s
cessfully with particular situations like vehicles approachi
standing cars, in which other models produce accidents.

II. DISCUSSION OF PREVIOUS MODELS

The first microscopic traffic models were developed in t
1960s. Many of them are special cases of the follow-t
leader model proposed by Gazis, Herman, and Rothery@6#.
This assumes that the dynamics of a vehiclea with velocity
va(t) at placexa(t) is given by the equation of motion

dxa~ t !

dt
5va~ t ! ~1!

and the acceleration equation

dva~ t1T!

dt
5k~ t1T!@va21~ t !2va~ t !# . ~2!

FIG. 1. The follow-the-leader data show the oscillatory natu
of the relative motion of vehicles.
133 © 1998 The American Physical Society
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According to this, a driver adapts to the velocityva21(t) of
the car in front, but this is delayed by the adaptation ti
T'1.3 s. The deceleration is proportional to the relative
locity

Dva5va2va21 , ~3!

where the proportionality factork reflects the sensitivity to
the stimulusDva . The sensitivity was assumed to depend
the vehicle velocity, and on the brutto distance

Sa5xa212xa , ~4!

in the following way:

k~ t1T!5k0

@va~ t1T!#m

@Sa~ t !# l
. ~5!

This choice allowed one to fit all equilibrium velocity
density relations of the form

Ve~r!5v0F12S r

rmax
D l 21G1/~12m!

~6!

by appropriate specification of the exponentsl andm (v0 is
the maximum velocity,r the spatial vehicle density, an
rmax the maximum vehicle density!. The best fit was reache
for fractional exponentsm'0.8 and l'2.8, so that this
model has no obvious interpretation. Apart from that,
model does not allow one to distinguish drivers with diffe
ent preferred velocities, and it cannot describe the acce
tion of a single vehicle correctly.

Only a few years ago, Bandoet al. proposed a very
charming microscopic traffic model. Despite its simplici
and its few parameters, their optimal velocity model~OVM!
described many properties of real traffic flows@7# and is
easily interpretable. It is based on the acceleration equa

dva~ t !

dt
5k@V~sa!2va~ t !# , ~7!

so that the vehicles adapt to a distance-dependent opt
velocity

V~sa!5V11V2 tanh~C1sa2C2! ~8!

with a certain relaxation timet51/k. Here

sa5xa212xa2 l a215Sa2 l a21 ~9!

denotes the netto distance, wherel a means the length o
vehicle a. Like the follow-the-leader models, the optim
velocity model is able to describe the formation of sto
and-go waves and emergent traffic jams, but it overcom
the aforementioned problems.

We carried out a calibration of the optimal velocity mod
with respect to the empirical follow-the-leader data, whi
we obtained from Bleileet al. The optimization procedure
was based on the evolutionary Boltzmann strategy@10#, and
the optimization criterion was the average relative quadr
deviation
e
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N S sa~ t !2sa
m~ t !

sa
m~ t !

D 2

~10!

of the simulated distancesa(t) from the measured vehicle
distancesa

m(t). The resulting optimal parameter values f
city traffic in Stuttgart arek50.85 s21, V156.75 m/s,V2
57.91 m/s,C150.13 m21, andC251.57.

A comparison with the data shows that the extrem
short relaxation timet51/k51.17 s results in values of th
acceleration which are too high, which leads to an oversho
ing of the vehicle velocity@cf. Fig. 2~a!#. The unrealistically
high accelerations also become obvious in Fig. 3, since
pirical accelerations are limited to 4 m/s2 @cf. Fig. 2~c!#. A
similar problem occurs with the deceleration behavior, i
standing car~e.g., at the end of a traffic jam or in front of
red traffic light! is approached from a large distance by
initially freely moving car. It turns out that the moving ve
hicle reacts too late to the vehicle at rest. The values
deceleration are unrealistic large, but still not sufficient
avoid an accident~cf. Fig. 4!.

These problems are solved by theT3 model

FIG. 2. The time-dependent velocityva(t) ~a!, distancesa(t)
~b!, and accelerationdva(t)/dt ~c! according to the optimal veloc
ity model ~OVM!, the general force model~GFM!, and the T3
model in comparison with follow-the-leader data of city traffic. A
cording to~a!, most of the models compare well with the measur
velocities. Only the OVM shows a significant overshooting, in
cating too large accelerations. Fitting of the vehicle distances
much harder task, as shown in~b!, but the T3 model and the GFM
perform well. In ~c!, one can see that the empirical acceleratio
and decelerations are usually limited to the range between23 and
14 m/s2, which is met by the GFM. Note that the vehicles had
stop three times due to red traffic lights~during the periods between
169.9 and 184 s, 233.5 and 253.5 s, and aftert5288 s!. At a time
t5143.8 s, the vehicle in front was turning right, so that the seco
car was following another vehicle, afterwards.
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PRE 58 135GENERALIZED FORCE MODEL OF TRAFFIC DYNAMICS
dva

dt
5

11b1va1b2sa1b3vasa1b4va211b5vava21

c01c1va1c2sa1c3vasa1c4va211c5vava21

(11)

proposed by Bleileet al. @8#. bk and ck are model param-
eters. The regression model~11!, which is based on a rationa
function, describes all aspects of vehicle dynamics in ci
realistically ~cf. Figs. 2–4!, but at the cost of additional pa
rameters. Whereas the optimal velocity model needs o
five model parameters, the T3 model contains 11 parame
If the model equations are scaled to dimensionless equa
~by scaling space or velocity and time by characteris
model quantities!, the number of parameters is reduced by
In Sec. II, we will propose an alternative model whic
reaches about the same goodness of fit as the T3 mode
with a considerably smaller number of parameters.

III. GENERALIZED FORCE MODEL

Motivated by the success of so-called social force mod
in the description of behavioral changes@11,1#, especially of
pedestrian dynamics@12,1#, we developed a related mod
for the dynamics of interacting vehicles. In setting up
equation of motion by specifying the effective accelerat
and deceleration forces, the approach is analogous to
molecular-dynamics method which is used for the simulat

FIG. 3. Acceleration of an unobstructed vehicle and of a follo
ing vehicle according to the optimal velocity model~OVM! and the
T3 model. Initially, both vehicles are at rest.

FIG. 4. Time-dependent velocityva(t) ~a! and acceleration
dva(t)/dt ~b! for a vehicle which approaches a standing vehi
according to the different simulation models discussed. The opt
velocity model produces an accident at timet534.7 s.
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of many-particle systems@13#, e.g., of driven granular media
@14#.

Besides various methodological similarities in the theor
ical treatment of traffic and granular flows, there are a
phenomenological analogies like the formation of dens
waves @15#. In both cases, the interactions are dissipati
i.e., they do not conserve kinetic energy. However, there
also differences. For granular media, the interaction for
are short ranged and belong to collision processes, wh
particles touch and temporarily deform each other. Vehi
interactions are long ranged and correspond to decelera
maneuvers. They are usually not related to collisions~i.e.,
accidents!, since the drivers try to keep a safe distances
from each other which can be considerably larger than
vehicle length@cf. Eq. ~16!#. Therefore, the effective spac
requirements of vehicles are much larger than their ac
size. Moreover, vehicular interactions do not conserve m
mentum~in contrast to granular ones!.

Another difference between granular and traffic dynam
is that the laws of granular interactions are very well know
pretty much like the basic laws of physics, whereas the la
of driver-vehicle dynamics~if they exist at all! are still to be
established. The particular challenge of modeling vehicle
namics is its dependence on factors like perceptions, psy
logical motivations and reactions, or social behaviors. Th
in contrast to physical processes, driver behavior canno
expected to be describable by a few natural constants.

According to the social force concept, the amount a
direction of a behavioral change~here the temporal chang
of velocity, i.e., the acceleration! is given by a sum of gen-
eralized forces. These reflect the different motivations wh
an individual feels at the same time, e.g., in response to t
respective environment. Since these forces do not fu
Newton’s laws likeactio 5 reactio, they are calledgeneral-
ized forces.Alternatively, they are namedbehavioralor so-
cial forces, since they mostly correspond to social intera
tions. The success of this approach in describing tra
dynamics is based on the fact that driver reactions to typ
traffic situations are more or less automatic and determi
by the optimal behavioral strategy~which is the results of an
initial learning process!. A detailed motivation, description
and discussion of the social force concept was given in R
@11,1,12#.

The driver behavior is mainly given by the motivation
reach a certain desired velocityva

0 ~which will be reflected
by an acceleration forcef a

0), and by the motivation to keep
safe distance from other carsb ~which will be described by
repulsive interaction forcesf a,b):

dva

dt
5 f a

0~va!1 (
b~Þa!

f a,b~xa ,va ;xb ,vb!1ja~ t ! . ~12!

The fluctuating forceja(t) may be used to include indi
vidual variations of driver behavior, but in our present inve
tigations it was set to zero. If we assume that the accelera
force is proportional to the difference between the desi
and actual velocity, and suppose that the most important
teraction concerns the car (a21) in front, we end up with

dva

dt
5

va
02va

ta
1 f a,a21~xa ,va ;xa21 ,va21! . ~13!

-
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136 PRE 58DIRK HELBING AND BENNO TILCH
The acceleration timeta is a third of the time which a freely
accelerating vehicle needs to reach 95% of the desired
locity.

Now we have to specify the interaction forcef a,a21. For

f a,a215
V~sa!2va

0

ta
, ~14!

and ta51/k, we would again obtain the optimal velocit
model. We extend this relation by a complementary te
which should guarantee early enough and sufficient brak
in cases of large relative velocitiesDva . This term should
increase with growing velocity differenceDva , but it should
be only effective if the velocity of the following vehicle i
larger than that of the leading vehicle, i.e., if the Heavis
function Q(Dva) is equal to 1. Moreover, the additiona
deceleration term should increase with decreasing dista
sa , but vanish for large distancesa→`. The braking time
ta8 belonging to this term should be smaller thanta , since
deceleration capabilities of vehicles are greater than ac
eration capabilities. We chose the following formula whi
meets the above conditions:

f a,a215
V~sa!2va

0

ta
2

DvaQ~Dva!

ta8
e2[sa2s~va!]/Ra8 . ~15!

This formula takes into account that vehicles prefer to kee
certain velocity-dependent safe distance

s~va!5da1Tava , ~16!

whereda is the minimal vehicle distance, andTa is the safe
time headway~i.e., about the reaction time!. Ra8 can be in-
terpreted as range of the braking interaction.

We can further reduce the number of parameters~and the
numerical effort!, if we replace the previousV(sa) function
~8! by

Va~sa ,va!5va
0$12e2[sa2s~va!]/Ra% . ~17!

In the case of identical model parameters of all vehicles,
corresponding equilibrium velocity-distance relation resu
from the implicit conditionva5Va(sa ,va), and is depicted
in Fig. 5.

The traffic model defined by Eqs.~13!, ~15!, and~17! will,
in the following, be called thegeneralized force modelof
traffic dynamics~GFM!. Since all its seven parameters ha
a clear and measurable meaning, they should have the

FIG. 5. Velocity-distance relations of the different traffic mode
in the stationary case, if all vehicles have identical parameters
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order of magnitude. A calibration with respect to the follow
the-leader data shows that this is indeed the case. We fo
the following optimal parameter values:va

0516.98 m/s,ta

52.45 s,da51.38 m,Ta50.74 s,ta850.77 s,Ra55.59 m,
andRa8598.78 m. Now the acceleration timeta is more than
twice as large as in the optimal velocity model, the braki
time ta8 is smaller thanta , as demanded, and the reactio
time Ta is also realistic. Note that the rangeRa of the accel-
eration interaction is much shorter than the rangeRa8 of the
deceleration interaction. This is not only sensible, it is a
the reason for the astonishingly good agreement with
empirical data. Table I compares the minimal values of
average relative quadratic deviationD that could be reached
for the different discussed traffic models by evolutionary p
rameter optimization@10#. ~The advantage of the applie
Boltzmann strategy is that this particular gradient meth
escapes local minima by means of a fluctuation term w
eventually decreasing variance.!

It turns out that the optimal velocity model is conside
ably improved by the T3 model. This is not surprising, sin
the goodness of fit should increase with the number of mo
parameters. Nevertheless, the generalized force m
reaches the best agreement with the data, although it inclu
only two third of the number of parameters of the T3 mod
The simulation results for the generalized force model
depicted in Fig. 2. Finally, the representation of the relat
vehicle movement in theDva-sa plane shows the expecte
oscillatory character of the follow-the-leader behavior, whi
can cause the development of stop-and-go traffic~cf. Fig. 6!.

In comparison with physical models, the generalized fo
model still seems to contain a lot of parameters. However
us discuss this in more detail for the previously mention

TABLE I. Minimal values of the average relative deviationD
between empirical data and simulation results that were reache
the different traffic models by evolutionary parameter optimizatio

Model OVM T3 GFM

D 0.0586 0.0354 0.0316

FIG. 6. The simulation of the follow-the-leader behavior acco
ing to the generalized force model shows the oscillatory nature
the relative motion of vehicles. The above result is in good agr
ment with the empirical findings depicted in Fig. 1.
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PRE 58 137GENERALIZED FORCE MODEL OF TRAFFIC DYNAMICS
molecular-dynamic models of granular media. If we want
describe interactions of smooth, inelastic, and spher
grains only, we need to know the particle size and the nor
restitution coefficient related to translational energy dissi
tion. In cases of rough spheres, we require two additio
parameters: a tangential restitution coefficient and a frict
coefficient@16#. Moreover, if the grains are nonspherical, t
situation becomes even more complicated. In conclusion,
small number of parameters occurring in physical models
often a result of simplifications and idealizations.

Finally, let us check the plausibility of the generalize
force model. In order to do this, we rewrite the model in t
form

dva

dt
5

Va* ~sa ,va ,Dva!2va~ t !

ta*
, ~18!

with

1

ta*
5

1

ta
1

Q~Dva!

ta9
~19!

and

Va* 5
ta9Va1taQ~Dva!va21

ta91taQ~Dva!
, ~20!

where

ta95ta8exp$@sa2s~va!#/Ra8 % . ~21!

For small velocity differencesDva or large distancessa , we
find

dva~ t !

dt
'

Va~sa ,va!2va~ t !

ta
, ~22!

so that vehicles try to approach the optimal velocityVa with
a relaxation timeta . This corresponds to the optimal velo
ity model, but with a velocity-dependent functio
Va(sa ,va). If a vehicle is faster than the leading vehic
~i.e.,Dva.0), and its distance is sufficiently small, we ha

dva~ t !

dt
'

va21~ t !2va~ t !

ta9
, ~23!

which coincides with a car-following model in which th
following vehicle adapts to the velocity of the vehicle
front. According to the formula forta9 , the deceleration is
al
al
-

al
n

e
re

stronger the closer the vehicles come to each other. Th
fore, the limiting cases of the generalized force model
have very reasonably.

IV. SUMMARY AND DISCUSSION

We have calibrated several microscopic traffic models
city traffic, compared them with empirical follow-the-lead
data, and investigated their properties. It turned out that
model showed accelerations and decelerations that were
large, but nevertheless caused accidents in certain situat
Another model was a regression model, so that the mea
of the model and its parameters was not clear. Therefore
developed the generalized force model, which reached
best agreement with the empirical data, although it had o
two parameters more than the optimal velocity model a
four parameters less than the T3 model. Another advan
of the generalized force model is that all its parameters
easily interpretable and have the expected order of ma
tude. Therefore, it can be immediately stated how the par
eters will differ between fast cars, slow cars, and trucks~the
latter being characterized by smallva

0 , but largeta andta8 ).
It can also be predicted what happens if the speed limit~i.e.,
va

0) is changed, if the weather conditions are bad~greaterta8 ,
but smallerva

0 and Ra8 ), if roads are used by vehicles wit
smaller lengthl a , if the reaction timeTa is reduced~by
means of technical measures like an autopilot!, etc. For these
reasons, the generalized force model is an ideal tool for
rying out detail studies of traffic flow, as well as for deve
oping and testing traffic optimization measures.

The simulation of large vehicle numbers is complete
analogous to molecular-dynamic simulation studies of ma
particle systems, e.g., of granular flows. The parameter
the different driver-vehicle units are specified individua
(a dependent!, then. In this case, one would specify typic
parameter values of fast cars, slow cars, and trucks, and
respective percentages. Alternatively, one could introduc
distribution of each parameter~e.g., a Gaussian one! around
a typical value. Then the simulation is started with the init
and boundary conditions of interest. Of course, the mo
can be also extended to a multi-lane model with lan
changing and overtaking maneuvers@1,17#. This is a topic of
current research.

ACKNOWLEDGMENTS

The authors want to thank the BMBF for financial supp
through the Research Project SANDY~Grant No. 13N7092!,
and the DFG~Grant No. He 2789/1-1!. Moreover, they are
grateful to the Bosch GmbH for supplying some of the
floating car data, and to Tilo Schwarz for carrying out pr
liminary simulation studies@18#.
Ito,
@1# D. Helbing,Verkehrsdynamik~Springer, Berlin, 1997!.
@2# I. Prigogine and R. Herman,Kinetic Theory of Vehicular Traf-

fic ~Elsevier, New York, 1971!; D. Helbing, Physica A233,
253 ~1996!; Phys. Rev. E53, 2366 ~1996!; C. Wagner, C.
Hoffmann, R. Sollacher, J. Wagenhuber, and B. Schu¨rmann,
ibid. 54, 5073~1996!; T. Nagatani, Physica A237, 67 ~1997!.

@3# B. S. Kerner and P. Konha¨user, Phys. Rev. E48, R2335
~1993!; 50, 54 ~1994!; B. S. Kerner, P. Konha¨user, and M.
Schilke, ibid. 51, 6243~1995!; D. A. Kurtze and D. C. Hong,
ibid. 52, 218 ~1995!; D. Helbing, ibid. 51, 3164~1995!.

@4# B. S. Kerner and H. Rehborn, Phys. Rev. Lett.79, 4030
~1997!.

@5# M. Schreckenberg, A. Schadschneider, K. Nagel, and N.
Phys. Rev. E51, 2939 ~1995!; T. Nagatani, ibid. 51, 922



ug

, J
,

in

.

r-

d

l

,

r,
.

138 PRE 58DIRK HELBING AND BENNO TILCH
~1995!; S. Krauss, P. Wagner, and C. Gawron,ibid. 55, 5597
~1997!.

@6# D. C. Gazis, R. Herman, and R. W. Rothery, Oper. Res.9, 545
~1961!.

@7# M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y S
iyama, Phys. Rev. E51, 1035 ~1995!; M. Bando, K. Hasebe,
K. Nakanishy, A. Nakayama, A. Shibata, and Y. Sugiyama
Phys. I 5, 1389 ~1995!; M. Herrmann and B. S. Kerner
Physica A255 ~1998!.

@8# T. Bleile, in Proceedings of the Fourth World Congress
Intelligen Transport Systems, Berlin, 1997, edited by ITS
America, ERMCO Europe, and VERTIS~ITS Congress Asso-
ciation, Berlin, 1997!; D. Manstetten, W. Krautter, and T
Schwab,ibid.

@9# D. H. Hoefs, Untersuchung des Fahrverhaltens in Fah
zeugkolonnen~Bundesministerium fu¨r Verkehr, Bonn-Bad
Godesberg, 1972!.

@10# N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, an
E. Teller, J. Chem. Phys.21, 1087~1953!.
-

.

@11# D. Helbing, Quantitative Sociodynamics~Kluwer, Dordrecht,
1995!.

@12# D. Helbing and P. Molna´r, Phys. Rev. E51, 4282~1995!.
@13# W. G. Hoover,Molecular Dynamics~Springer, Berlin, 1986!.
@14# H. J. Herrmann, in3rd Granada Lectures in Computationa

Physics, edited by P. L. Garrido and J. Marro~Springer,
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